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Abtract
This project focuses on development of new methods for sparse modeling and

non-negative matrix factorization, as their applicability.

In the first year, we focused on establishment of the methods: (i) a sparse topic

model that can learn thousands of topics from a large set of documents and infer

the topic mixture of each document, (i) a method of supervised dimension reduction

for large datasets, and (iii) a non-negative matrix factorization (NMF) method with

interpret-ability. The research on sparse topic model and supervised dimension reduc-

tion as well as NMF is motivated by the need of reducing complexity in dealing with

huge and complex datasets in big data. The proposed methods were theoretically

and experimentally evaluated.

In the second year, we continued to improve and test the methods as well as

to employ sparse modeling and dimensionality reduction, including the developed

methods, in our research in materials science and biomedicine.

The results of the project are reported as papers published in peer-reviewed jour-

nals and conferences.
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1. Introduction

Big data are datasets that are very large and complex that current IT techniques are

not able to deal well with them. The features of big data typically include: (a) Huge

number of instances and variables (dimensions), (b) The complex and changing nature

of the data. Sparse modeling and dimensionality reduction are two key approaches

to reduce the data size and to manage complex relationships among data, thus they

have greatly attracted the attention of machine learning research community.

Sparse modeling methods– aiming at using a small number of variables to model

the problem– are largely based on Lasso and recently emerged as promising direction

to big data. Typical methods include relaxed Lasso [15], bootstrap Lasso [16], group

Lasso [17], etc. or beyond Lasso as sparse PCA [29], sparse NMF, etc.

Topic models– a case of probabilistic graphical models, which has been recently

matured as marriage of probability theory and graph theory providing a powerful tool

for modeling and solving problems related to uncertainty and complexity [20]. Typical

topic modeling methods include probabilistic latent semantic analyzing (PLSA) [21]

and latent Dirichlet allocation (LDA) [14], and in the last decade a large number

of work has made a significant progress in topic model research. Most topic models

developed so far are dense models that required all the words of the dictionary appear

in each topic and all learned topics appeared in describing the original documents,

and thus they cannot work for large datasets. Recently, there have been work on

sparse topic models, typically regularized LSI [25], spase topical coding [30], etc.

Even though these models provide elegant solutions to the sparsity problem, there

remain some serious drawbacks when dealing with large-scale settings.

Nonnegative matrix factorization (NMF) is the problem of analyzing a original

data matrix as product of two matrices (one presents the basis of the new feature

space and the other presents the data represented in the new feature space). A

recent comprehensive review of Wang [26] shows increasing fundamental role of NMF

in transformations for dimension reduction and component analysis. For big data,

approximate factorization, computing speed, sparsity solution and interpretability for

NMF are being received more attention.

Sparse modeling and NMF are powerful approaches to dimensionality reduction,

the key issue in big data analytics, and applications of big data analysis always re-

quire sparse modeling and dimensionality reduction. Concerning to all of the above

mentioned, our project aims to do the followings:

3
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1. Task 1: Develop a sparse topic model that can learn a large number of topics from

a large collection of objects and represents each object by a small number of topics.

2. Task 2: Develop a supervised dimension reduction method and based on that a

classification method that effectively works for tough situations such as non-linear

separable cases or short sequences.

3. Task 3: Develop a new formulation of non-negative matrix factorization problem

with high computation performance and a clear interpretation.

4. Task 4: Use sparse models and dimensionality reduction techniques in application,

and develop related methods as well.

Concerning Task 1, we developed FSTM, a fully sparse topic model [6] that allows

us to represent each topic by a subset of words in the dictionary and to represent each

document as a mixture of a small number of learned learned. In order to deal with

large scale topic models, we developed DOLDA [5], an online version of the Frank-

Wolfe algorithm that allows us to first make an online version of LDA and following

it an online version of FSTM has been developing.

Concerning Task 2, we developed SDR, a two-phase framework for doing dimen-

sion reduction of supervised discrete data [1]. The framework was demonstrated

to exploit well label information and local structure of the training data to find a

discriminative low-dimensional space.

Concerning Task 3, we developed sNMF (simplicial non-negative matrix factor-

ization) [4], as a new formulation of NMF with constraint as a convex combination of

latent components with significant properties such as interpretability, sparsity, high

performance in classification task. To provide a basic tool for further development of

NMF, we developed a fast and robust anti-lopsided algorithm for non-negative least

squares (NNLS) with high accuracy [7].

Concerning Task 4, we developed a technique to analyze short sequences and

applied it in biomedicine research [8] based on SDR and FSTM, and employed sparse

modeling as well as dimensionality reduction in study of materials design [3].

In section 3, we will briefly present each of these papers obtained by the project.

4
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2. The developed methods, their evaluation and discussion

In the followings, we will present each developed method, the theoretical and experi-

mental evaluation, and discussion on its merit as well.

2.1 Sparse topic models

2.1.1 Fully sparse topic model (FSTM) [6]

The objective of this work is to develop a sparse topic model that learns sparse topics

(i.e., topics represented by a proper subset of terms in of the vocabulary instead of

all terms as in a dense topic) and that infers sparse documents of topic mixtures (i.e.,

documents each is mixture of a limited number of topics instead of all topics as in a

dense document).

We developed a Fully Sparse Topic Model (FSTM) [6] that can be viewed as

a simplified variant of LDA [14] (without Dirichlet prior) and PLSA [21] without

observable documents. These facts allow only few topics to contribute to a document.

This relaxation allows us to infer really sparse topic proportions of documents with

Frank-Wolfe algorithm [18]. No employment of Dirichlet prior over topics enables us

to learn models of low complexity, i.e., sparse models.

A topic model often assumes that a given corpus is composed from K topics,

β = (β1, ...,βK), and each document is a mixture of those topics. Example models

include PLSA, LDA and many of their variants. Under those models, each document

has another latent representation. Such latent representations of documents can be

inferred once those models have been learned previously.

Definition 1 (Topic proportion) Consider a topic model M with K topics. Each

document d will be represented by θ = (θ1, ..., θK)t, where θk indicates the proportion

that topic k contributes to d, and θk ≥ 0,
∑K

k=1 θk = 1. θ is called topic proportion

(or latent representation) of d.

Definition 2 (Inference) Consider a topic model M with K topics, and a given

document d. The inference problem is to find the topic proportion that maximizes the

likelihood of d under the model M.

For some applications, it is necessary to infer which topic contributes to a specific

emission of a term in a document. Nevertheless, it may be unnecessary for many

other applications.

5
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The task of learning in FSTM is to learn all topics β, given a corpus C. We use EM

scheme to iteratively learn the model as usual. Specifically, we repeat the following

two steps until convergence:

E-step: do inference for each document of C;

M-step: maximize the likelihood of C with respect to β.

The task of inference in FSTM is done by connecting with concave optimization

based on a proved lemma, and allows us to seamlessly use the Frank-Wolfe algorithm

for inference. An appropriate adaptation to the Frank-Wolfe algorithm [18] results in

an inference algorithm for FSTM.

Table 1: Data for experiments. n̄ is the average number of different terms in a doc-
ument.

Data M Testing size V Classes n̄
AP 2,021 225 10,473 0 135
KOS 3,087 343 6,906 0 103
Grolier 23,044 6,718 15,276 0 80
Enron 35,875 3,986 28,102 0 96
20Newsgroups 15,935 3,993 62,061 20 80
Webspam 350,000 350,000 16,609,143 2 3,728

Table 2: Results of learning FSTM from Webspam
Number of topics 1000 2000
Time per EM iteration 28 minutes 65 minutes
EM iterations to reach convergence 17 16
Topic sparsity 0.0165 0.0114
(compared with dense models) (60 times smaller) (87 times smaller)

Document sparsity 0.0054 0.0028
(compared with dense models) (185 times smaller) (357 times smaller)

Storage for the new representation (θ) 31.5 Mb 33.2 Mb
(compared with the original corpus) (757 times smaller) (718 times smaller)

Average length of topic proportions, s̄ 5.4 5.6
(compared with dense representations) (185 times smaller) (357 times smaller)

6
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Figure 1: Comparative experimental results of 4 topic models (FSTM, LAD, PLSA
and STC [30]) as the number K of topics increases. The lower line the
better method. For STC, there was a memory problem when dealing with
Enron and Grolier for large K (e.g., when K = 70, STC has to solve a
optimization problem with more than 20 millions of variables, and hence
cannot be handled in a personal PC with 6Gb memory.) Hence we could
not do experiments for such large K’s.
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right shows how sparse the learned topic proportions are. We see that
FSTM used few features to represent documents while PLSA and LDA
used most features.
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2.1.2 Discussion on FSTM

In this work, we present our initial step towards resolving the mentioned four large-

scale settings. Our attempts attack the two fundamental issues mentioned before by

seeking fast inference algorithms and sparse models.

Our first contribution is the introduction of Fully Sparse Topic Model (FSTM).

Loosely speaking, FSTM is a simplified variant of LDA when relaxing the Dirichlet

priors over hidden topics and over hidden topic proportions of documents. It is also

a simplified variant of PLSA when removing the observed variable associated with

each document. Nevertheless, FSTM has some following attractive properties:

- Inference is done by the Frank-Wolfe algorithm [18] which converges at a linear

rate to the optimal solutions. The inference algorithm allows us to swiftly re-

cover sparse topic proportions. Further, it provides a principled way to directly

trade off sparsity of solutions against inference quality and running time.

- Learning of topics amounts to multiplication of two sparse matrices. Hence

topics are often very sparse. The sparsity level can be directly controlled.

- The complexity of the learning algorithm is near independent of the dimension-

ality.

- There is an implicit prior over topic proportions, though no explicit employment

of priors. Such a prior can help FSTM avoid overfitting.

For the first time in the topic modeling literature, FSTM is the model that couples

the two interesting properties: near dimension-free learning algorithm, and ability to

trade off sparsity of solutions against inference quality. The near independence of

dimensionality implies that FSTM provides an almost optimal answer to the setting

(c). It also implies that there exists a near dimension-free algorithm for doing dimen-

sionality reduction (DR), since topic modeling is an approach to DR. These properties

are crucial for dealing with data of extremely high dimensions. We hope that our re-

sults open a motivation for future studies to seek dimension-free algorithms for other

problems.

The ability of FSTM to learn sparse topics and to infer sparse latent represen-

tations of documents allows us to save substantially memory for storage. Combined

with a linear inference algorithm, FSTM overcomes severe limitations of existing prob-

abilistic models and can deal well with the settings (b), (c), and (d). Fast learning of

topics and fast inference of documents also enable us to deal well with the setting (a).

9
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Table 3: Large-scale classification on Webspam. Though reducing the dimensionality
drastically, the quality of classification is still comparably maintained.

Data Dimensions Storage Accuracy Classified by

Original Webspam 16609143 23.3 Gb 99.15% BMD [Yu et al. 2012]

When reducing dimensionality with FSTM

1000 topics 1000 31.5 Mb 98.877% FSTM + Liblinear

2000 topics 2000 33.2 Mb 99.146% FSTM + Liblinear

To see more advantages of FSTM over existing models, we report some theoretical

characteristics of some closely related models in Table 4.

Our second contribution is a distributed architecture for learning FSTM from

large data. We employ both distributed scheme for data and task parallelism. Warm-

start is further used to speed up learning, while keeping comparable quality. All of

these provide a scalable learning algorithm that can handle very large corpora. In

particular, we successfully learned a topic model with more than 33 billions of latent

variables, from a large corpus with a vocabulary of 16 millions terms. This is the

largest model that has been learned in the literature up to now.

A side contribution is the introduction of the Frank-Wolfe algorithm for doing

inference in admixture topic models. This algorithm has many attractive properties

such as having linear convergence rate, swiftly recovering sparse solutions, providing

a way to directly trade off sparsity of solutions against quality and time. Those prop-

erties are essential in order to resolve large-scale settings. Moreover, such properties

make the Frank-Wolfe algorithm more attractive than traditional inference methods

such as folding-in [21], variational methods [20], Gibbs sampling [24], [27].

Extensive experiments show that FSTM works well in practice. It significantly

outperforms many models in terms of learning time, inference time, model complexity,

and sparsity of latent representations of documents. The predictive power is observed

to be comparable with other models. In terms of generalization on unseen data, FSTM

often does better. Qualitative performance of FSTM is also observed in application

to classification, for both small and very large data.

We theoretically and experimentally show that FSTM can provide provably good

solutions. It requires modestly few arithmetic operations, linear in the length of the

document to be inferred or in the number of topics. The learning algorithm has very

low complexity which does not depend on the size V of the vocabulary. Further, we

10
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Table 4: Theoretical comparison of 8 topic models: FSTM, PLSA, LDA, FTM
(Williamson, 2010), SparseTM (Wang, 2009), STC (Zhu, 2011), SRS
(Shashanka, 2007), RLSI (Wang, 2011). V is the vocabulary size, K is
the number of topics, n̄ is the average length of documents. K̄ is the aver-
age number of topics to which a term has nonzero contributions, K̄ ≤ K.
‘-’ denotes ‘no’ or ‘unspecified’ ; ‘X’ means ‘yes’ or ‘taken in consideration’.

Model FSTM PLSA LDA FTM SparseTM STC SRS RLSI
Document sparsity X - - X - X X -
Topic sparsity X - - - X - X X
Sparsity control direct - - indirect indirect indirect indirect indirect
Trade-off:

sparsity vs. quality X - - - - - - -
sparsity vs. time X - - - - - - -

Dimension-free learning X - - - - - - -
Inference complexity O(n̄.K̄ +K) O(n̄.K) O(n̄.K) - - O(n̄.K) O(n̄.K) O(V.K̄2 +K3)
Storage for topics V.K̄ V.K V.K - - V.K V.K̄ V.K̄
Auxiliary parameters 0 0 0 0 0 3 2 2

can easily trade off quality of solution against sparsity and inference time. Existing

topic models do not own these interesting properties.

Theorem 1. Consider FSTM with K topics, and a document d. Let Cf be de-

fined as Cf = −1
2

supy,z∈∆;ỹ∈[y,z](y − z)t.∇2f(ỹ).(y − z) for the function f(x) =∑
j∈Id dj log xj. Then algorithm 1 converges to the optimal solution with a linear

rate. In addition, after L iterations, the inference error is at most 4Cf/(L+ 3), and

the topic proportion θ has at most L+ 1 non-zero components.

Theorem 2. Each iteration of our algorithm requires only O(n.K̄ + K) arithmetic

operations, where K̄ is the average number of topics to which a term has non-zero

contributions, K̄ ≤ K, and n = |Id|. Overall, after L iterations, algorithm 1 requires

L.O(n.K̄ +K).

The benchmark datasets shown in Table 1 were used in our experiments. Figure 1

summarizes the comparative experimental results about sparsity and time. Document

sparsity is used to see sparsity level of latent representations discovered by those

models. Figure 2 and Figure 3 show the quality of three models on four corpora.

Figure 4 and Tables 2-3 are about large scale learning.

2.1.3 Fast online inference for topic models [5]

Topic models such as LDA or FSTM face a challenge to analyze very large text

collections. To this end, we recently developed the new method with three novel

contributions [5]: (1) a proof for the tractability of the MAP estimation of topic

mixtures under certain conditions that might fit well with practices, even though the
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Figure 5: Performance of DOLDA and SVI on two large corpora when learning 100-
topic LDA. The higher the better for Predictive Probability and Coherence,
whereas lower is better for Learning hours. The last row shows how long
the two methods reach to the same generalization level.

problem is known to be intractable in the worse case; (2) the provably fast algorithm

OFW (Online Frank-Wolfe) for inferring topic mixtures; (3) the dual online algo-

rithm DOLDA (Dual online LDA) for learning LDA at a large scale. We show that

OFW converges to some local optima, but under certain conditions it can converge to

global optima. The discussion of OFW is general and hence can be readily employed

to accelerate the MAP estimation in a wide class of probabilistic models. From ex-

tensive experiments we find that DOLDA can achieve significantly better predictive

performance and semantic quality, with lower run-time, than stochastic variational

inference. Further, DOLDA enables us to easily analyze text streams or millions of

documents. Based on the result and experience with DOLDA, we are carrying out a

more challenging step: an dual online for FSTM.

Our experiments aim to see how well DOLDA learns in comparison with SVI

(stochastic variational inference proposed by Hoffman in 2013). Figure 5 presents the

results on two corpora. One can easily observe that as seeing more documents, both

DOLDA and SVI reached to better predictiveness levels with a fast rate. For Pubmed,

DOLDA performed signicantly better than SVI even just after seeing a few thousands

12
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Figure 6: Sensitivity of DOLDA when changing parameters. (a) Change the mini-
batch size when fixed {κ = 0.9, τ = 1, L = 50}. (b) Change the number
L of iterations for OFW when fixed {κ = 0.9, τ = 1}. (c) Change the
forgetting rate κ when fixed {τ = 1, L = 50}. (d) Change τ when fixed
{κ = 0.9, L = 50}. The minibatch size in the cases of (b), (c), (d) is 5000.
These experiments were done on New York Times, with K = 100 topics.

of documents. DOLDA often reached at the same generalization level (measured by

log predictive probability) as SVI within a much less runtime. SVI often needed much

more time and data to reach the same prediction level as DOLDA. This demonstrates

the goodness of our algorithm.

We investigated the effects of the parameters on the performance of DOLDA.

The parameters include: the forgetting rate κ, τ , the number L of interations for

OFW, and the minibatch size. Inappropriate choices of those parameters might affect

significantly the performance of DOLDA. To see the effect of a parameter, we changed

its values in a finite set, but fixed the other parameters. Results of our experiments

are depicted in Figure 6.

We also want to see the convergence rate of OFW, inference time, and stability.

To this end, we took the 100-topic LDA as a fixed model which has been learned

by SVI previously from New York Times; and then we did inference on individual

testing documents by OFW and VB. Both methods were allowed 100 iterations to do

inference on a document. Results are depicted in Figure 7.

13
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2.2 Supervised dimension reduction (SDR) [1]

The task of supervised dimension reduction (SDR) is to find a new space of K dimen-

sions which preserves the predictiveness of the response/label variable Y . Loosely

speaking, predictiveness preservation requires that projection of data points onto the

new space should preserve separation (discrimination) between classes in the original

space, and that proximity between data points is maintained. Once the new space is

determined, we can work with projections in that low-dimensional space instead of

the high-dimensional one. Our approach is based on topic modeling.

We propose a novel framework which consists of two phases. Loosely speaking, the

first phase tries to find an initial topical space, while the second phase tries to utilize

label information and local structure of the training data to find the discriminative

space. The first phase can be done by employing an unsupervised topic model such as

LDA, FSTM, and hence inherits scalability of unsupervised models. Label informa-

tion and local structure in the form of neighborhood will be used to guide projection

of documents onto the initial space, so that inner-class local structure is preserved

and inter-class margin is widen. As a consequence, the discrimination property is not

only preserved, but likely made better in the final space.

Consider a corpus D = {d1, ...,dM} consisting of M documents which are com-

posed from a vocabulary of V terms. Each document d is represented as a vector of

term frequencies, i.e. d = (d1, ..., dV ) ∈ RV , where dj is the number of occurrences

of term j in d. Let {y1, ..., yM} be the class labels assigned to those documents,

respectively.

Figure 7: Convergence and inference time of OFW and VB as the number of iterations
increase. The first two subplots show how fast OFW and VB maximize their
objective functions, while the last two subplots show how long they took.
The last subplot shows how long VB did inference when the lower bound of
Pr(d|β, α, η) was used to check convergence. Note that V B did hundreds
of times faster than V Bbound, i.e., checking bounds for convergence in VB
requires intensive time.

14
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Figure 8: Sketch of approaches for SDR. Existing methods for SDR directly find
the discriminative space, which is known as supervised learning (c). Our
framework consists of two separate phases: (a) first find an initial space
in an unsupervised manner; then (b) utilize label information and local
structure of data to derive the final space.

(a) (b) (c) (d)

Figure 9: Laplacian embedding in 2D space. (a) data in the original space, (b) un-
supervised projection, (c) projection when neighborhood is taken into ac-
count, (d) projection when topics are promoted. These projections onto the
60-dimensional space were done by FSTM and experimented on 20News-
groups. The two black squares are documents in the same class.

Figure 8 depicts graphically this framework, and a comparison with other one-

phase methods. Note that we do not have to design entirely a learning algorithm as

for existing approaches, but instead do one further inference phase for the training

documents. Details of our framework are presented in Algorithm 1.

2.2.1 Why is the framework good?

We theoretically elucidate the main reasons for why our proposed framework is rea-

sonable and can result in a good method for SDR. In our observations, the most

important reason comes from the choice of the objective for inference. Inference with

that objective plays three crucial roles to preserve or make better the discrimination

property of data in the topical space.

• The first role is to preserve inner-class local structure of data. This is a result

of using the additional term 1
|Nd|

∑
d′∈Nd

L(d̂′). Since nearest neighbors Nd are

15
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Algorithm 1 Two-phases framework for SDR

Phase 1: learn an unsupervised model to get K topics β1, ...,βK . Let A =
span{β1, ...,βK} be the initial space.
Phase 2: (finding discriminative space)

(2.1) for each class c, select a set Sc of topics which are potentially discriminative
for c.

(2.2) for each document d, select a set Nd of its nearest neighbors which are in the
same class as d.

(2.3) infer new representation θ∗d for each document d in class c using the Frank-
Wolfe algorithm with the objective function f(θ) =

λ.L(d̂) + (1− λ).
1

|Nd|
∑
d′∈Nd

L(d̂′) +R.
∑
j∈Sc

sin(θj),

where L(d̂) is the log likelihood of document d̂ = d/||d||1; λ ∈ [0, 1] and R
are nonnegative constants.

(2.4) compute new topics β∗1, ...,β
∗
K from all d and θ∗d. Finally, B =

span{β∗1, ...,β∗K} is the discriminative space.

selected within-class only, doing projection for d in step (2.3) is not intervened

by documents from outside classes. Hence within-class local structure would be

better preserved.

• The second role is to widen the inter-class margin, owing to the termR
∑

j∈Sc
sin(θj).

The projection of d is encouraged to be close to the topics which are potentially

discriminative for class c. Hence projection of class c is preferred to distributing

around the discriminative topics of c. Increasing the constant R implies forcing

projections to distribute more densely around the discriminative topics, and

therefore making classes farther from each other. Figure 9(d) illustrates the

benefit of this second role.

• The third role is to reduce overlap between classes, owing to the term λL(d̂) +

(1 − λ) 1
|Nd|

∑
d′∈Nd

L(d̂′) in the objective function. This is a very crucial role

that helps the two-phases framework works effectively. Explanation for this role

needs some insights into inference of θ.
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(a) (b) (c)

Figure 10: Projection of three classes of 20newsgroups onto the topical space by (a)
FSTM, (b) FSTMc, and (c) MedLDA. FSTM did not provide a good
projection in the sense of class separation, since label information was
ignored. FSTMc and MedLDA actually found good discriminative topical
spaces, and provided a good separation of classes.

2.2.2 Class separation and classification quality

Separation of classes in low-dimensional spaces is our first concern. A good method

for SDR should preserve inter-class separation of data in the original space. Figure

10 depicts an illustration of how good different methods are.

The framework SDR was demonstrated to exploit well label information and local

structure of the training data to find a discriminative low-dimensional space. General-

ity and flexibility of our framework was evidenced by adaptation to three unsupervised

topic models, resulted in PLSAc, LDAc, and FSTMc for supervised dimension reduc-

tion. These methods can perform qualitatively comparably with the state-of-the-art

method, MedLDA. In particular, FSTMc performed significantly best and can often

achieve more than 10% improvement over MedLDA. Meanwhile, FSTMc consumes

substantially less time than MedLDA does. These results show that our framework

can inherit scalability of unsupervised models to yield competitive methods for su-

pervised dimension reduction.

The resulting methods (PLSAc, LDAc, and FSTMc) are not limited to discrete

data. They can work also on non-negative data, since their learning algorithms ac-

tually are very general. Hence in this paper, we contributed methods for not only

discrete data but also non-negative real data. The code of these methods is available

at www.jaist.ac.jp/∼s1060203/codes/sdr/

There is a number of possible extensions to our framework. First, one can easily

modify the framework to deal with multilabel data. Second, the framework can

be modified to deal with semi-supervised data. A key to these extensions is an

appropriate utilization of labels to search for nearest neighbors, which is necessary for
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our framework. Other extensions can encode more prior knowledge into the objective

function for inference. In our framework, label information and local neighborhood

are encoded into the objective function and have been observed to work well. Hence,

we believe that other prior knowledge can be used to derive good methods.

Of the most expensive steps in our framework is the search for nearest neighbors.

By a modest implementation, it requires O(k.V.M) to search k nearest neighbors

for a document. Overall, finding all k nearest neighbors for all documents requires

O(k.V.M2). This computational complexity will be problematic when the number of

training documents is large. Hence, a significant extension would be to reduce com-

plexity for this search. It is possible to reduce the complexity to O(k.V.M. logM).

Furthermore, because our framework use local neighborhood to guide projection of

documents onto the low-dimensional space, we believe that approximation to local

structure can still provide good result. However, this assumption should be studied

further. A positive point of using approximation of local neighborhood is that com-

putational complexity of a search for neighbors can be done in linear time O(k.V.M).

2.3 Non-negative matrix factorization

2.3.1 Simplicial non-negative matrix factorization [4]

1. sNMF Problems

Mathematically, we can define the NMF problem as follows:

Definition 5 (NMF): Given a dataset consisting of M N-dimension vectors X =

[X1, X2, ..., XM ] ∈ RM×N
+ , where each vector presents a data instance. NMF seeks to

decompose X into a product of two nonnegative factorizing matrices F and G, where

F = [F1, ..., FM ] ∈ RM×K
+ and G = [G1, ..., GK ] ∈ RK×N

+ are coefficient matrix and

latent component matrix, respectively, X ≈ FG.

We proposed a new NMF formulation, called Simplicial Non-negative Matrix Fac-

torization with expected properties. The technical details can be found in papers

[3]. We assume that each instance is a convex combination of the latent components

obtained by adding a new simplicial constraint into NMF. Hence, we have:

Definition 6 (Simplicial NMF): Simplicial NMF is NMF where each instance Xm

is a convex combination of the latent components Xm ≈
K∑
k=1

FmkGk and
K∑
k=1

Fmk = 1

for all m.
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By adding this new constraint, we have associated a probabilistic model with

NMF problem, in which each instance is a probabilistic distribution over the latent

components and represented as a convex combination of latent components. In other

words, this convex combination provides explicitly the extent of contribution of each

latent component, while other formulations of NMF do not have. Moreover, regarding

to geometry meaning, each instance is projected as a point on the simplex of latent

components. This projection is called instance inference. As a result, we obtained

significant properties: sparsity, convexity, fast computation, clear interpretability,

distributability and parallelizability.

To control the quality of NMF, various cost functions are employed. The cost

functions f(X||FG) often contain two parts: The first part is a divergence function

that measures the distance between original coordinates (X) and inverted coordi-

nates (FG); and the second one is possibly regularizations and constraints to control

sparsity or orthogonality.

Recently, there are numerous divergence functions, including squared Euclidean

distance, KL-divergence, α-divergence, β-divergence, IS divergence, and Bregman

divergence, etc. A chosen divergence mainly depends on the data type and its prop-

erties. The two most popular divergences are widely used in numerous applications:

• Squared Euclidean distance: D(x||y) = ||x− y||22 =
∑

i(xi − yi)2

• KL-divergence: D(x||y) =
∑

i xi.log
xi
yi
− xi + yi, where x and y are positive

vectors.

With these divergence functions, we have two basic problems of simplicial NMF

(sNMF):

• sNMF with squared Euclidean distance J(X||FG) =
M∑
m=1

D(Xm||FmG), where

D(Xm||FmG) = ||Xm − FmG||22

• sNMF with KL-divergence J(X||FG) =
M∑
m=1

D(Xm||FmG), whereD(Xm||FmG) =

N∑
n=1

(Xmn.log
Xmn

[FmG]n
−Xmn + [FmG]n); X,F,G ≥ 0;

K∑
k=1

Fmk = 1 for all m.

The following algorithms for learning and inference are given in the reference.
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Algorithm 1: Inference for data instance x

Input: Data instance x and latent components G = {gk}Kk=1

Output: New coefficient f minimizing h = ||x− fG||22
1 begin
2 Choose component gk closest to x;
3 Set f = 0; fk = 1; and r = x− gk;
4 repeat
5 Select k = argmink∈{1..K}[

∂h
∂f

]k;

6 α = r(gk − x)T/||gk − fG||22;
7 α = min(α, 1);

8 α = max(α,max(−1,− fk
1−fk

));

9 if α == 0 then
10 break;

11 Set r = x− αgk − (1− α)(x− r);
12 Set f = (1− α)f and fk = fk + α;

13 until False;

Algorithm 2: Inference for data instance x

Input: Data instance x and latent components G = {gk}Kk=1

Output: New coefficient f minimizing h(f) =
N∑
n=1

(xnlog
xn

[fG]n
− xn + [fG]n)

1 begin
2 Choose component gk closest to x.;
3 Set fi = 0; fk = 1;
4 repeat
5 Select k = argmini∈{1..K}[

∂h
∂f

]k;

6 α = argminα∈[0,1]h(αgk + (1− α)fG);
7 Set f = (1− α)f and fk = fk + α;

8 until convergence condition satisfied ;
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Figure 11: Necessary time to learn a discriminative space, as the number K of topics
increases. FSTMc and PLSAc often performed substantially faster than
MedLDA. As an example, for News3s and K = 120, MedLDA needed
more than 50 hours to complete learning, whereas FSTMc needed less
than 8 minutes.

NMF oNMF spNMF cNMF sNMF
10 14.1 15.79 2.04 57.98 34.08
15 17.73 20.91 2.57 60.72 38.63
20 20.86 27.31 3.9 59.62 45.34
25 20.91 29.31 4.53 59.89 43.77
30 22.89 32.08 3.73 58.56 49.18
35 20.91 29.31 4.53 59.89 43.77
40 26.35 35.81 5.76 58.08 52.38
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Figure 12: Sparsity of new coefficients for Euclidean distance with K = 30

2. Complexity

2.1 Complexity for sNMF with Squared Euclidean Distance

Theorem 4. Consider Algorithm 1 to infer a data instance having N-dimension by K

latent components with L iterations. Then its complexity is O(L[K.S(N)+N ]), where

S(N) is a function estimate the number of non-zero elements in latent components

and S(N) ≤ N .
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NMF 	
  conNMF locNMF nsNMF sNMF
5 0 0 0 18.46 71.74
10 0 0 0 33.65 83.45
15 0 0 0 46.23 89.68
20 0.06 0.01 0 51.74 92.57
25 0.03 0.07 0 58.25 94.09
30 0.07 0.04 0 63.79 95.18
35 0.11 0.05 0 67.88 95.91
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Figure 13: Sparsity of new coefficients for KL-divergence with K = 30

NMF oNMF spNMF cNMF sNMF
10 15.83 14.78 19.73 22.96 19.13
15 13.80 12.75 17.25 16.35 12.68
20 11.33 10.20 17.25 13.73 11.25
25 9.90 9.45 15.68 14.85 9.30
30 9.60 8.18 14.55 13.43 8.55
35 8.93 7.43 13.88 10.65 8.48
40 9.38 7.50 14.25 12.90 8.18
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Figure 14: Inaccuracy for Digit Classification

kl-­‐NMF conNMF locNMF nsNMF sNMF
5 21.57 21.78 23.09 21.71 30.79
10 22.12 22.26 18.31 21.01 29.13
15 17.13 21.5 16.3 18.79 12.62
20 17.96 19.35 14.63 20.11 17.61
25 19.63 17.41 13.25 19.83 18.93
30 19.07 16.92 14.91 16.71 14.91
35 16.02 19.49 16.09 19.76 12.34

10	
  

15	
  

20	
  

25	
  

30	
  

5	
   10	
   15	
   20	
   25	
   30	
   35	
  

inaccuracy(%)	
  

K	
  

kl-­‐NMF	
  

conNMF	
  

locNMF	
  

nsNMF	
  

sNMF	
  

Figure 15: Inaccuracy for Spam Classification
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NMF spNMF oNMF cNMF sNMF
1 13022674609 14511283130 13024735232 23871313901 10042699766
5 12764643850 14565107509 12796669932 13871313901 5909128928
10 11110468368 14548839075 11206029641 12531434366 5583947747
15 8589899680 14490126747 8712832164 12104948501 5477725749
20 7364341299 14339331389 7440607373 11506701790 5419958023
25 6744467838 14015742669 6703211107 10855111344 5378680936
30 6382886793 13557466871 6275968697 10268360937 5347147714
35 6149592950 13130582360 6023377524 9781185608 5328175197
40 5987924879 12783628693 5869474109 9388509899 5309998890
45 5871346292 12507964301 5765248184 9073045706 5290409471
50 5785068933 12288230279 5684848543 8815984165 5272685081
55 5718527525 12111414576 5620721245 8602313657 5261008564
60 5665420668 11965899670 5568861357 8421856625 5254312502
65 5621879241 11843765308 5525784864 8268070639 5249372646
70 5585326271 11740752243 5488145796 8136429385 5245684879
75 5553745632 11654591026 5455588884 8023312744 5244780704
80 5526033046 11583334492 5427442966 7925582718 5244780704
85 5501464055 11525073292 5402627382 7840551064 5244780704
90 5479230824 11477861788 5381334620 7766019011 5244780704
95 5458688321 11439737164 5363891206 7700259407 5244780704
100 5439580080 11408930829 5350275575 7641938979 5244780704
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Figure 16: Information Loss for Squared Euclidean Distance with K = 30

Proof In the Algorithm 1, for each iteration, we have:

∂h
∂f

= 2(fG−X)GT

Hence: [∂h
∂f

]k = 2(fG−X)gTk = 2rgTk
Therefore, the complexity of finding out the best coefficient k: O(K.S(N)). In

addition, the complexity of estimating a is O(N). Overall, the complexity for L iter-

ations is O(L[K.S(N) +N ])

2.2 Complexity for sNMF with KL-divergence

Theorem 5. Consider Algorithm 2 to infer a data instance having N-dimension by K

latent components with L iterations. Then, its complexity is O(L[K.S(N)+N. log 1
ε
]).

In addition, for the learning step with KL-divergence, we employ an approximate

algorithm with low complexity:

Theorem 6. Let f be a twice differentiable convex function over simplex 4 and

denote Cf = supy,z∈4;ỹ∈[y,z](y − z).52f(ỹ).(y − z)T . After l iterations, the Frank-

Wolfe algorithm will find an approximate solution xl with at most (l + 1) non-zeros

coefficients which satisfy

maxx∈4f(xl)− f(x) ≤ Cf

l+1

From this theorem, we have the following remarks:

• Convergence rate of inference is linear and the goodness of solutions is bounded,

which are crucial in applications.

• Inference depends mostly on complexity of f and 5f .
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• We can tradeoff easily between sparsity and quality of solutions by stop finding

new latent components to optimize the cost function. This property is valid for

real applications, which the number of non-zero coefficients is limited.

Theorem 7. Let consider to learn new latent components after inferring coefficients

of data instances. Then, its complexity is O(M [S(N) + S(K)]).

3. Sparse Representation

In order to compare the sparsity of solutions, we compute the percentage of zero

coefficients

number of zero coefficients
number of coefficients

× 100

The results are highly competitive with other methods. For Euclidean distance,

although our algorithm’s sparsity is only less than cNMF [19] (Figure 12), it has lower

information loss and higher performance in classification. In addition, especially for

KL-divergence, our approach retains the best sparse solutions (Figure 13), while it

still has the best result for the other measures.

The results are highly competitive with other methods. For Euclidean distance,

although our algorithm’s sparsity is only less than cNMF [19] (Figure 12), it has lower

information loss and higher performance in classification. In addition, especially for

KL-divergence, our approach retains the best sparse solutions (Figure 13), while it

still has the best result for the other measures.

Classification quality is one of measures that evaluates our method’s effective-

ness as NMF is often considered as a dimension redution technique used widely in

classification. In this experiment, we use Random Forest, a robust algorithm for

classification. Observing Figures 14 and 15, our method is one of methods with the

lowest errors in testing. For Euclidean distance and the digit dataset, the result of our

method is very close to the best method oNMF [16]. Meanwhile, for KL-divergence

and spam dataset, our approach obtains the lowest misclassification with K = 15 and

K = 35.

For dimension reduction, information loss criterion is one of the most important

measure. Figures 15 and 16 show that our approach has the lowest information loss.

As a result, we obtained significant properties:

• Sparsity: Instance inference is casted as a convex problem over the simplex of

latent components by adding the simplicial condition. Furthermore, we can

24

Distribution A: Approved for public release. Distribution is unlimited



easily control the solution sparsity via greedy approximation algorithms such

as Frank-Wolfe algorithm [18].

• Convexity: Obviously, inferring an instance is to find an approximation of the

convex combination that is a convex optimization problem [15].

• Computation: The instance representation can be considered as a projection

on the simplex of the latent components. Hence, the inference based on this

projection can be much faster than other formulations because of the simplicial

constraint added [15]. In comparison to other formulations, this one has signifi-

cant computing advantages in the inference of instances, while the learning step

is the same with the previous basic formulations because they solve the same

optimization problem.

• Interpretability: The new formulation gives a more comprehensible interpreta-

tion of the important role of coefficients. Particularly, each data instance is

a convex combination of the latent components, in which the sum of coeffi-

cients always equals to 1 through NMF. Hence, the important role of the latent

components on instances can be concisely represented via values of coefficients.

Otherwise, for other formulations, evaluating the contribution of components is

forceful because of the lack of constraints between coefficients. Alternatively, a

post-processing can be employed to find out the role of the latent components.

However, it is independent and inconsistent with learning NMF model.

• Distributability and parallelizability: NMF problem contains two sub-problems:

inference and learning. The learning problem is the same with other formula-

tions and can be solved by distributed algorithms [17]. Meanwhile, the inference

one of our formulation can be solved by a much faster algorithm comparing to

the others’, and it can be parallelized [15]. This favor is hard to be reached in

other formulations.

The cost function is specially determined on the used divergence function. In

this paper, we focus on solving this problem with the two most popular divergence

functions with squared Euclidean distance and KL-divergence.

2.3.2 Anti-lopsided algorithm for non-negative least squares [7]

Non-negative least squares problem (NNLS) is one of the most important fundamental

problems in numeric analysis and has been widely used in scientific computation and
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kl-­‐NMF conNMF locNMF nsNMF sNMF
1 2650374.23 2653162.89 2934149.42 2656284.11 2183097.16
2 2564279.94 2576341.03 2914386.20 2581400.52 1988997.94
3 2417925.90 2435024.58 2894933.53 2437822.10 1871516.54
4 2230996.82 2244851.62 2867026.30 2249206.47 1820718.47
5 2066309.80 2074674.34 2828129.11 2081479.53 1790034.19
6 1952650.75 1954816.92 2781031.07 1962498.54 1773852.41
7 1879260.19 1877485.32 2731351.60 1886561.77 1762897.90
8 1831154.04 1827015.32 2684276.82 1836709.07 1756512.51
9 1798550.96 1794022.52 2643410.28 1801039.77 1751088.30
10 1776827.36 1772896.49 2609290.30 1774436.22 1747957.58
11 1761875.26 1758053.39 2581002.63 1756890.40 1743984.36
12 1751098.12 1747372.48 2557705.17 1746140.74 1739762.68
13 1743144.92 1739210.73 2538671.69 1738612.77 1735146.38
14 1737282.32 1732643.55 2523123.14 1732796.81 1732260.79
15 1732791.67 1727698.96 2510361.04 1728100.13 1730864.76
16 1729161.99 1723991.04 2499886.93 1724181.40 1729264.38
17 1726263.48 1720953.42 2491313.69 1721040.09 1727057.21
18 1723909.56 1718402.91 2484300.58 1718535.40 1725323.32
19 1722001.91 1716188.28 2478538.18 1716465.45 1724569.58
20 1720349.81 1714253.58 2473725.00 1714733.86 1723645.43
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Figure 17: Information Loss for KL−divergence with K = 30

data modeling. In big data analytics, the current limitations on speed and accuracy

of NNLS algorithms remain as typical challenges, and it influences the development

of NMF. Targeting to improve NNLS solution, we proposed a fast and robust anti-

lopsided algorithm with high accuracy that is totally based on the first order methods.

The main idea of our algorithm is to transform the original NNLS problem into an

equivalent non-negative quadratic programming problem, which significantly reduces

the scaling problem of variables. The proposed algorithm can reach higher accuracy

and speed with an exponent convergence rate at least O(1 − 1
2||Q||2 )k where

√
n ≤

||Q||2 ≤ n and n is the dimension size of solutions. The experiments on large matrices

clearly show the high performance of the proposed algorithm in comparing to the

state-of-the-are algorithms.

We investigate the convergence speed of the square of derivatives ||f̄ ||22 in Figure 18

and the difference between the values of objective function and the optimal values

log10(|f(xk)−f ∗|+1) during the running time, see Figure 19. The results clearly show

that our algorithm and algorithm Remarkably, our algorithm comes to the optimal

values much more faster than other methods. This favor proves that the anti-lopsided

transformation may make iterative methods using the first derivative more effective

because it significantly reduces scaling problems of variables.

2.4 Other work on sparse modeling and dimensionality reduction

This part presents some of our work relating to sparse modeling and dimensionality

reduction. Some work is not planned and registered to the project, but much inspired

from the ideas and methods developed in the project and some directly employed the

project’s methods.
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Figure 18: log10(||f̄ ||22) during runing time
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2.4.1 Modeling the log-normality data [2]

We investigate two important properties of real data: diversity and log-normality.

Log-normality accounts for the fact that data follow the lognormal distribution,

whereas diversity measures variations of the attributes in the data. To our knowledge,

these two inherent properties have not been paid much attention from the machine

learning community, especially from the topic modeling community. In this article,

we fill in this gap in the framework of topic modeling. We first investigate whether

or not these two properties can be captured by the most well-known Latent Dirichlet

Allocation model (LDA), and find that LDA behaves inconsistently with respect to

diversity. Particularly, it favors data of low diversity, but works badly on data of high

diversity. Then, we argue that these two inherent properties can be captured well by

endowing the topic- word distributions in LDA with the lognormal distribution. This

treatment leads to a new model, named Dirichlet-lognormal topic model (DLN) [2].

Using the lognormal distribution complicates the learning and inference of DLN,

compared with those of LDA. Hence, we used variational method, in which model

learning and inference are reduced to solving convex optimization problems. Exten-

sive experiments strongly suggest that (1) the predictive power of DLN is consistent

with respect to diversity, and that (2) DLN works consistently better than LDA for

datasets whose diversity is large, and for datasets which contain many log-normally

distributed attributes. Justifications for these results require insights into the used

statistical distributions and will be discussed in the article.

2.4.2 Dimensionality reduction in study of new materials design [3]

In [3]* we worked on application of machine learning in new materials design. For

a material with a given hypothesized structural model, the electronic structure, as

well as many other physical properties can be predicted by solving the Schrdinger

equation. Conventionally, the ground states potential energy of a material is calcu-

lated using atomic positions in the hypothesized structure model. By optimizing the

ground states potential energy, the optimal structure can be derived. The features

of an optimal structure model of materials, as well as its derived physical properties,

results in a series of optimizing processes, and in addition has strong multivariate

correlations. The task of materials design is to make these correlations clear and to

determine a strategy to modify the materials to obtain desired properties. However,

such correlations are usually hidden and difficult to uncover or predict by experiments

or experience. As a consequence, the design process is currently performed through

28

Distribution A: Approved for public release. Distribution is unlimited



Figure 20: The graph represents all relations between the features. Brown nodes and
white nodes indicate independent and dependent features, respectively.
Red edges and blue edges indicate positive and negative correlation, re-
spectively. The arrows are from response variables to explanatory vari-
ables. The edges are plot with pen-widths in proportion to the values of
the corresponding relations.

time-consuming and repetitive experimentation and characterization loops, and to

shorten the design process is clearly a big target in materials science.

In an effort to improve on existing techniques, we propose a first principle calculation-

based data mining method and demonstrate its potential for a set of computation-

ally designed single molecular magnets with distorted cubane Mn4+Mn3+
3 core (Mn4

SMMs). The essential idea of the method is a process consisting of sparse regression

model and structure learning with reduction of the relations between features. Fig-

ure 18 shows all relations between the features learned from the data, and Figure 19

shows relations between reduced sets of features by using the method.

2.4.3 Dimensionality reduction in biomedicine [8]

In [8] we employed the methods of dimensionality reduction developed by project [1],

[6] to analyze the shorten sequences and applied it to find mechanisms of resistance

of HCV (hapatitus C virus) typical drugs (interferon and vibavirin). Under the
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framework of our method, the typical topic models PLSA [20], LDA [14] and our

fully sparse topic model FSTM [7] all reached predictive accuracy much higher than

SVM with different kernel functions (Table 5).

Figure 21: The simplified graph represents the relations between selected features.
Brown nodes and white nodes indicate independent and dependent fea-
tures, respectively. Red edges and blue edges indicate positive and neg-
ative correlation, respectively. The arrows are from response variables to
explanatory variables. The edges are plotted with pen-widths in propor-
tion to the values of the corresponding relations.

2.4.4 Potential collaboration with research institutions

In our two projects with Fujitsu Hokoriku [11] and with Vietnam National University

of Ho Chi Minh City [12], also dimensionality reduction is essential. For predicting

the status of IT systems, we have used different methods of reducing the sets of more

than 170 log features into about 40 latent features and use them to detect the key

factors providing expected properties of the materials.

We are doing joint research on the content of the project with two institutions:

(i) Centre for Pattern Recognition and Data Analytics (PRaDA), Faculty of Science,

Engineering and Built Environment, Deakin University, Australia; (ii) John von Neu-

mann Institute at Vietnam National University at Ho Chi Minh City, Vietnam.

2.4.5 Software Download

The source codes of FSTM is freely available at http://www.jaist.ac.jp/s1060203/codes/fstm.

The source codes of SDR is available at http://www.jaist.ac.jp/s1060203/codes/sdr/
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4. Conclusion

The project has reached its objectives with developed methods for sparse modeling

and dimensionality reduction. These methods have been theoretically and experimen-

tally evaluated. This project also opens for us other challenging problems to pursue

in coming time.
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